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ABSTRACT 

This paper presents a simple computational procedure for the laminar, fully established velocity and 
temperature in straight ducts with irregular, singly connected cross-sections by virtue of a control volume 
discretization of the momentum and energy equations in boundary-fitted co-ordinate systems. The combined 
procedure has been applied to a large group of ducts whose cross-sections possess different levels of 
difficulty. The numerical predictions for the pressure drop (friction factor) and the convective heat transfer 
coefficient (Nusselt number) have been reported for a sub-class of ducts with curved sides and sharp corners 
utilizing various grid sizes. 
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NOMENCLATURE 
Ac = Cross sectional area of duct iv = Mean axial velocity 
cp = Specific heat x,y = Transverse co-ordinates 
Dh = Equivalent hydraulic diameter, 4 Ac/P z = Axial co-ordinates 
f = Friction factor, equation (7) 
h = Convective heat transfer coefficient Greek letters 
k = Thermal conductivity μ = Dynamic viscosity 
NuDh = Nusselt number, equation (8) ξ, η = Transformed co-ordinates 
ρ = Perimeter of duct ρ = Density 
dp/dz = Axial pressure gradient 
ReDh = Reynolds number, pwDh/μ Subscripts 
Τ = Temperature ο = Refers to inlet 
w = Axial velocity w = Refers to wall 

INTRODUCTION 

Channels of complex, singly connected, cross sections are extensively employed in heat and mass 
exchange devices such as passages of turbomachinery, ducts of compact heat exchangers, and 
sub-channels of nuclear reactors. An inherent feature of fluid flows inside straight ducts of 
irregular cross section is that the shape of the cross plane may cause a marked distortion of the 
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velocity and temperature profiles. Consequently, this distortion may enhance or lessen the 
corresponding changes in pressure and heat transfer. 

Interestingly, the common denominator in the calculation procedure of friction factors for basic 
ducts is its simplicity. In contrast; computation of the Nusselt number is not as straightforward. 
For the circular tube with a constant wall temperature, Bhatti1 examined an infinite series solution 
for the developed temperature profile and was able to predict the exact value for the Nusselt 
number, NuD = 3.657. In principle, his technique could have been extended to other regular ducts 
whose sides conform to either Cartesian or cylindrical co-ordinate systems, e.g. parallel-plate 
channels and annular passages. However, it must be anticipated that the analysis of ducts with 
irregular cross sections whose sides cannot be accommodated into standard co-ordinate systems 
is more elaborate. 

Historically, it has been recognized that numerical solutions of partial differential equations in 
regions of arbitrarily shaped boundaries are difficult. These solutions are usually generated by 
finite-difference techniques or finite element methods (see Ames2). 

In the present note an attempt is made to analyse numerically the forced convection patterns of 
hydrodynamically and thermally developed flows inside straight ducts with arbitrarily-shaped, 
but singly connected cross sections. As observed by Mills3, one important classification of heat 
exchangers is the so-called single-stream heat exchanger in which the temperature of only one 
stream varies, while the temperatures of the other streams remain unaltered. Examples of these 
heat exchangers include different types of evaporators and condensers. 

The computational procedure that is outlined in the following sections is based on a suitable 
combination of boundary-fitted co-ordinates and the finite-volume method. Consequently, once 
the velocity and temperature profiles have been accurately calculated, the pressure gradients and 
the convective heat transfer can be numerically determined. 

CONSERVATION EQUATIONS 

Attention is focused on viscous fluids flowing inside straight ducts having irregular, singly 
connected cross sections and isothermal, thin-walls. Assuming laminar, hydrodynamic developed 
and thermally developing conditions, the momentum and energy conservation equations for such 
fluids having constant thermophysical properties are conveniently modelled in Cartesian co
ordinates as follows: 

where w = w(x,y) designates the axially-invariant velocity profile. Note that the terms involving 
axial diffusion of both momentum and heat are not included in these equations for simplicity. 

w = 0, Τ = Tw, at the duct surface (3) 

Τ = T0, at the entrance, z = 0. (4) 

IMPLEMENTATION OF BOUNDARY FITTED CO-ORDINATES 

The conservation equations, in conjunction with the boundary conditions, are transformed from a 
physical co-ordinate system (x,y) into a computational co-ordinate system (ξ,η) by adopting 
suitable boundary fitted co-ordinates. The details of the transformation relations are omitted for 
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brevity, but the interested reader may consult Thompson et al.4. Consequently, the converted 
momentum and energy equations are rewritten as 

respectively, where c1, c2, and c3 identify the transformation coefficients, whereas J denotes the 
Jacobian matrix. 

NUMERICAL COMPUTATIONAL PROCEDURE 

The calculation procedure for the two conservation equations in the transformed computational 
domain is based on the finite-volume discretization of Patankar5. The domain is divided into 
contiguous control volumes and to increase accuracy; these control volumes account for nine 
nodes, instead of the standard five nodes. Some relevant concepts and details previously used in 
solving laminar, fully developed, non-isothermal flow with heat transfer in regular ducts have 
been extended to the situations envisaged in the present work. 

The procedure for solving the two systems of algebraic equations for the field variables: 
velocity and the temperature was the standard line-by-line method explained in reference 5. In 
addition, the block correction procedure of Settari and Aziz6 was incorporated to enhance 
convergence. 

Normally, for any duct regardless of the cross sectional shape, the pressure drop is calculated 
by the friction factor: 

and the heat transfer is determined by the Nusselt number: 

respectively. Both quantities, being of global character, relied on the equivalent hydraulic 
diameter, Dh. 

The accuracy of the computer code has been validated by using a known standard shape. Thus, 
the circular tube was chosen, where the fully developed values of friction factor and Nusselt 
number are fReD = 64 and NuD = 3.657, respectively. 

Directing the attention to the sensitivity of the computed numerical results, various grid sizes 
have been carefully tested in order to guarantee the highest orthogonality of the grid for this 
simple shape. At this point, it is important to underline that Thompson et al.4 have concluded that 
moderate departures from orthogonality in the grids do not have repercussions on errors in the 
calculation of global parameters. Their findings were based on actual calculations. 

The computations were carried out with three grids which at first were considered adequate: a 
10 x 10 coarse grid; a 20 x 20 moderate grid; and a 40 x 40 fine grid. As far as the accuracy is 
concerned, each of the velocity and temperature fields was deemed to converge when the 
maximum normalized residuals for both reached values between 10 - 4 and 10-6. The moderate grid 
with 20 x 20 points produced results for fRED and NUD that were within a 1 per cent error. 
Moreover, it was found that as the grid becomes finer NUD converges faster than fRED to their 
respective real values. The 10 x 10 coarse grid supplied a value of fReD = 62.02 which lies within 
-3.09 per cent of the true solution exhibiting a maximum deviation and then departing very 
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rapidly to 63.48 with an accompanying - 0.81 per cent error for a moderate grid of 20 x 20 nodes. 
In contrast, the same 10 x 10 grid furnished values of NuD = 3.69, which has a diminute error of 
0.81 per cent. These numbers become 3.67 and 0.32 per cent respectively for a 20 x 20 grid. 
Finally, for a fine 40 x 40 grid, the deviations between the calculated and real values of both fReD 
= 64 and NuD = 3.658 are imperceptible. This comparison points out the manner in which the 
results converge towards the actual solution after systematically refining the grid. 

PRESENTATION OF RESULTS 

This section pertains to the assessment of the hydrodynamics and heat transfer characteristics 
highlighting the suitability of the combined numerical procedure for a general class of non-
circular passages. From an engineering standpoint, the relevant quantities for analysis and design 
of these ducts are: the pressure drop; and the heat transfer rate. For generality, both quantities are 
expressed by the hydraulic diameter. Tables 1 and 2 have been prepared to illustrate a comparison 
of fReDh and NuDh for a highly demanding duct configuration whose geometries exhibited curved 
sides and sharp corners, e.g. moon ducts (see Figures 1 and 2). The moon duct is a duct formed by 
two circular arcs which are related by the function cos φ = b/(2a); the radius of the outer and inner 
arcs are a and b, respectively. The same grid sizes employed before for the circular tube have been 
implemented for this geometry. 

The patterns already observed for a circular tube are repeated for a moon duct with an arc ratio 
of 2φ = 60°, namely the 20 x 20 moderate grid provided satisfactory results within 1 per cent 
margin of error. Analogously, for this grid fReDh converged much faster than the corresponding 
NuDh to their respective true values. On refinement of the grid to 40 χ 40 nodes, the opposite trend 
was observed, namely NuDh converges faster than fReDh to their respective real values. 
Conversely, for a more intricate shape, like the moon duct with an arc ratio of 2γ = 120°, the 20 x 
20 moderate grid does not suffice to accommodate the stiff velocity and temperature distortions. 
This grid produces global results for fReDh that stay within 2 per cent, whereas for NuDh the errors 
are contained within 1 per cent error. Nevertheless, the stringent criterion of 1 per cent can be 
perfectly satisfied with a finer grid, such as a 40 x 40 grid. 

From a conceptual standpoint, other boundary conditions do not need to be tested because the 
Nusselt numbers for isothermal wall conditions, NuDh,T, can be safely used to estimate the other 

Table 1 Friction factors and Nusselt numbers for a moon shaped duct 
with 2φ = 60° 

Grid 

10 x 10 
20 x 20 
40 x 40 
Shah7 

fReDh 

59.93 
61.23 
61.55 
61.65 

Percentage error 

-2.79 
-0.68 
-0.16 

NuDh 

2.57 
2.63 
2.64 

-

Percentage error 

Table 2 Friction factors and Nusselt numbers for a moon shaped duct 
with 2φ = 120° 

Grid 

10 x 10 
20 x 20 
40 x 40 
Shah7 

fReDh 

55.49 
58.87 
59.80 
60.11 

Percentage error 

-7.69 
-2.06 
-0.52 

NuDh 

2.79 
2.93 
2.96 

-

Percentage error 
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Nusselt numbers for isoflux conditions, NuDh,T. Under normal circumstances, the latter is slightly 
higher than the former, deviating by a small percentage only. A compilation of the NuDhH/NuDh,T 
ratios for a wide variety of tubes with singly connected, cross sectional shapes is gathered in Table 
138 of Reference 7, providing evidence that the ratios vary smoothly from 1.09 to 1.26. 

To save journal space, it was decided to omit the heat and fluid flow results for a collection of 
equally important duct configurations with singly-connected regions that are delineated in 
Reference 7. 

CONCLUDING REMARKS 

Verification of the numerical predictions has been done on a straight circular tube (test case) prior 
to the inclusion of irregular ducts in the boundary-fitted co-ordinate system. After a series of 
numerical experiments, grid independence has been achieved on 20 x 20 grids for the majority of 
the ducts tested. Furthermore, ducts with intricate shapes required a much finer grid, like 40 x 40. 
It may reasonably be concluded that the finite volume discretization in conjunction with a 
boundary-fitted co-ordinate system is a versatile and effective route for the study of fully 
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developed flow and temperature in channels with singly connected complex geometries. Actually, 
variation of the grid sizes depends primarily on the intricacy of the cross-section and the precision 
level needed. 
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